Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 165(Pt A): 346-353, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32987082

RESUMO

Corneal cross-linking (CXL) is a common surgical procedure used to modify corneal biomechanics and stabilize keratoconus progression which is still under discussion. Its side effects, which are mostly related to anatomical unpredictability and stromal exposure, are the reason for the search for new CXL agents. In this work we have quantitatively evaluated the porcine corneal stroma architecture treated with collagen crosslinking agents such as riboflavin solutions and açai extract, using second harmonic generation microscopy. Aimed at evaluating the morphological changes in the corneal stroma after collagen crosslinking under a CXL chemical agent, a tubeness filter based Hessian matrix to obtain a 3D fiber characterization of the SHG images was applied. The results showed a curling effect and shortening of the collagen fibers treated with açai as compared to the control. They also showed a higher degree of clustering of the collagen fibers with larger empty spaces when compared to the other two groups. We believe that studies such as these presented in this paper are a good direct nondestructive and free labeling evaluation technique that allows the observation of morphologic features of corneas treated with new CXL agents.


Assuntos
Colágeno/química , Substância Própria/química , Reagentes de Ligações Cruzadas/química , Riboflavina/química , Animais , Microscopia de Geração do Segundo Harmônico , Suínos
2.
Colloids Surf B Biointerfaces ; 186: 110671, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31816460

RESUMO

Biomechanical and electrical properties are important to the performance and survival of red blood cells (RBCs) in the microcirculation. This study proposed and explored methodologies based on optical tweezers and cationic quantum dots (QDs) as biophotonic tools to characterize, in a complementary way, viscoelastic properties and membrane electrical charges of RBCs. The methodologies were applied to normal (HbA) and ß-thalassemia intermedia (Hbß) RBCs. The ß-thalassemia intermedia disease is a hereditary hemoglobinopathy characterized by a reduction (or absence) of ß-globin chains, which leads to α-globin chains precipitation. The apparent elasticity (µ) and membrane viscosity (ηm) of RBCs captured by optical tweezers were obtained in just a single experiment. Besides, the membrane electrical charges were evaluated by flow cytometry, exploring electrostatic interactions between cationic QDs, stabilized with cysteamine, with the negatively charged RBC surfaces. Results showed that Hbß RBCs are less elastic, have a higher ηm, and presented a reduction in membrane electrical charges, when compared to HbA RBCs. Moreover, the methodologies based on optical tweezers and QDs, here proposed, showed to be capable of providing a deeper and integrated comprehension on RBC rheological and electrical changes, resulting from diverse biological conditions, such as the ß-thalassemia intermedia hemoglobinopathy.


Assuntos
Membrana Eritrocítica/patologia , Eritrócitos/patologia , Hemoglobinopatias , Pinças Ópticas , Pontos Quânticos/química , Talassemia beta/patologia , Adolescente , Adulto , Cátions/química , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Humanos , Pessoa de Meia-Idade , Eletricidade Estática , Viscosidade , Adulto Jovem , Talassemia beta/metabolismo
3.
Sci Rep ; 9(1): 7715, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-31118443

RESUMO

One of the promising tools to evaluate collagen in the extracellular matrix is the second-harmonic generation microscopy (SHG). This approach may shed light on the biological behavior of cancers and their taxonomy, but has not yet been applied to characterize collagen fibers in cases diagnosed as invasive breast carcinoma (BC) of histological special types (IBC-ST). Tissue sections from 99 patients with IBC-ST and 21 of invasive breast carcinoma of no special type (IBC-NST) were submitted to evaluation of collagen parameters by SHG. Tissue microarray was performed to evaluate immunohistochemical-based molecular subtype. In intratumoral areas, fSHG and bSHG (forward-SHG and backward-SHG) collagen parameters achieved their lowest values in mucinous, papillary and medullary carcinomas, whereas the highest values were found in classic invasive lobular and tubular carcinomas. Unsupervised hierarchical cluster analysis and minimal spanning tree using intratumoral collagen parameters allowed the identification of three main groups of breast cancer: group A (classic invasive lobular and tubular carcinomas); group B (IBC-NST, metaplastic, invasive apocrine and micropapillary carcinomas); and group C (medullary, mucinous and papillary carcinomas). Our findings provide further characterization of the tumor microenvironment of IBC-ST. This understanding may add information to build more consistent tumor categorization and to refine prognostication.


Assuntos
Neoplasias da Mama/ultraestrutura , Carcinoma/ultraestrutura , Colágeno/análise , Matriz Extracelular/ultraestrutura , Idoso , Neoplasias da Mama/química , Neoplasias da Mama/patologia , Carcinoma/química , Carcinoma/classificação , Carcinoma/patologia , Estrogênios , Matriz Extracelular/química , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica , Neoplasias Hormônio-Dependentes/química , Neoplasias Hormônio-Dependentes/patologia , Neoplasias Hormônio-Dependentes/ultraestrutura , Progesterona , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Análise Serial de Tecidos , Neoplasias de Mama Triplo Negativas/química , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/ultraestrutura
4.
J Cell Physiol ; 234(10): 19048-19058, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30924162

RESUMO

Prostate development and function are regulated by androgens. Epithelial cell apoptosis in response to androgen deprivation is caspase-9-dependent and peaks at Day 3 after castration. However, isolated epithelial cells survive in the absence of androgens. Znf142 showed an on-off expression pattern in intraepithelial CD68-positive macrophages, with the on-phase at Day 3 after castration. Rats treated with gadolinium chloride to deplete macrophages showed a significant drop in apoptosis, suggesting a causal relationship between macrophages and epithelial cell apoptosis. Intraepithelial M1-polarization was also limited to Day 3, and the inducible nitric oxide synthase (iNOS) knockout mice showed significantly less apoptosis than wild-type controls. The epithelial cells showed focal DNA double-strand breaks (DSB), 8-oxoguanine, and protein tyrosine-nitrosylation, fingerprints of exposure to peroxinitrite. Cultured epithelial cells induced M1-polarization and showed focal DSB and underwent apoptosis. The same phenomena were reproduced in LNCaP cells cocultured with Raw 264.7 macrophages. In conclusion, the M1 142 -macrophage (named after Znf142) attack causes activation of the intrinsic apoptosis pathway in epithelial cells after castration.


Assuntos
Apoptose/fisiologia , Células Epiteliais/metabolismo , Macrófagos/fisiologia , Estresse Oxidativo/fisiologia , Próstata/patologia , Antagonistas de Androgênios , Androgênios/metabolismo , Animais , Linhagem Celular , Gadolínio/farmacologia , Masculino , Camundongos , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Próstata/citologia , Próstata/crescimento & desenvolvimento , Neoplasias da Próstata/patologia , Células RAW 264.7 , Ratos , Ratos Wistar , Transativadores/metabolismo , Fatores de Transcrição
5.
Sci Rep ; 9(1): 2341, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787475

RESUMO

Magnetic resonance imaging (MRI) is a powerful non-invasive diagnostic tool that enables distinguishing healthy from pathological tissues, with high anatomical detail. Nevertheless, MRI is quite limited in the investigation of molecular/cellular biochemical events, which can be reached by fluorescence-based techniques. Thus, we developed bimodal nanosystems consisting in hydrophilic quantum dots (QDs) directly conjugated to Gd(III)-DO3A monoamide chelates, a Gd(III)-DOTA derivative, allowing for the combination of the advantages of both MRI and fluorescence-based tools. These nanoparticulate systems can also improve MRI contrast, by increasing the local concentration of paramagnetic chelates. Transmetallation assays, optical characterization, and relaxometric analyses, showed that the developed bimodal nanoprobes have great chemical stability, bright fluorescence, and high relaxivities. Moreover, fluorescence correlation spectroscopy (FCS) analysis allowed us to distinguish nanosystems containing different amounts of chelates/QD. Also, inductively coupled plasma optical emission spectrometry (ICP - OES) indicated a conjugation yield higher than 75%. Our nanosystems showed effective longitudinal relaxivities per QD and per paramagnetic ion, at least 5 times [per Gd(III)] and 100 times (per QD) higher than the r1 for Gd(III)-DOTA chelates, suitable for T1-weighted imaging. Additionally, the bimodal nanoparticles presented negligible cytotoxicity, and efficiently labeled HeLa cells as shown by fluorescence. Thus, the developed nanosystems show potential as strategic probes for fluorescence analyses and MRI, being useful for investigating a variety of biological processes.

6.
Am J Physiol Heart Circ Physiol ; 316(3): H566-H579, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499716

RESUMO

Although redox processes closely interplay with mechanoresponses to control vascular remodeling, redox pathways coupling mechanostimulation to cellular cytoskeletal organization remain unclear. The peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) supports postinjury vessel remodeling. Using distinct models, we investigated whether pecPDIA1 could work as a redox-dependent organizer of cytoskeletal mechanoresponses. In vascular smooth muscle cells (VSMCs), pecPDIA1 immunoneutralization impaired stress fiber assembly in response to equibiaxial stretch and, under uniaxial stretch, significantly perturbed cell repositioning perpendicularly to stretch orientation. During cyclic stretch, pecPDIA1 supported thiol oxidation of the known mechanosensor ß1-integrin and promoted polarized compartmentalization of sulfenylated proteins. Using traction force microscopy, we showed that pecPDIA1 organizes intracellular force distribution. The net contractile moment ratio of platelet-derived growth factor-exposed to basal VSMCs decreased from 0.90 ± 0.09 (IgG-exposed controls) to 0.70 ± 0.08 after pecPDI neutralization ( P < 0.05), together with an enhanced coefficient of variation for distribution of force modules, suggesting increased noise. Moreover, in a single cell model, pecPDIA1 neutralization impaired migration persistence without affecting total distance or velocity, whereas siRNA-mediated total PDIA1 silencing disabled all such variables of VSMC migration. Neither expression nor total activity of the master mechanotransmitter/regulator RhoA was affected by pecPDIA1 neutralization. However, cyclic stretch-induced focal distribution of membrane-bound RhoA was disrupted by pecPDI inhibition, which promoted a nonpolarized pattern of RhoA/caveolin-3 cluster colocalization. Accordingly, FRET biosensors showed that pecPDIA1 supports localized RhoA activity at cell protrusions versus perinuclear regions. Thus, pecPDI acts as a thiol redox-dependent organizer and noise reducer mechanism of cytoskeletal repositioning, oxidant generation, and localized RhoA activation during a variety of VSMC mechanoresponses. NEW & NOTEWORTHY Effects of a peri/epicellular pool of protein disulfide isomerase-A1 (pecPDIA1) during mechanoregulation in vascular smooth muscle cells (VSMCs) were highlighted using approaches such as equibiaxial and uniaxial stretch, random single cell migration, and traction force microscopy. pecPDIA1 regulates organization of the cytoskeleton and minimizes the noise of cell alignment, migration directionality, and persistence. pecPDIA1 mechanisms involve redox control of ß1-integrin and localized RhoA activation. pecPDIA1 acts as a novel organizer of mechanoadaptation responses in VSMCs.


Assuntos
Adaptação Fisiológica/fisiologia , Citoesqueleto/fisiologia , Miócitos de Músculo Liso/fisiologia , Isomerases de Dissulfetos de Proteínas/fisiologia , Citoesqueleto de Actina/fisiologia , Animais , Fenômenos Biomecânicos , Movimento Celular , Células Cultivadas , Inativação Gênica , Integrina beta1/metabolismo , Músculo Liso Vascular/metabolismo , Oxidantes/metabolismo , Pressorreceptores , Isomerases de Dissulfetos de Proteínas/genética , Coelhos , Proteína rhoA de Ligação ao GTP/metabolismo
7.
Biomed Opt Express ; 9(5): 2407-2417, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29760997

RESUMO

Acquiring images of biological tissues and cells without the assistance of exogenous labels with a fast repetition rate and chemical specificity is what coherent anti-Stokes Raman Scattering (CARS) imaging offers. Nonresonant background (NRB) is one of the main drawbacks of the CARS microscopy technique because it limits the detection of weak Raman lines and the detection of low-concentration molecules. We show that a six-wave mixing process with two beams, which is a cascade effect of CARS, show better signal/NRB ratio and can be utilized for biological tissues imaging. The cascade CARS (CCARS) depends on chi-3 to the fourth power, instead of chi-3 squared as in the usual CARS signal; therefore, the contrast ratio with NRB is higher for CCARS than for CARS. We present analytic calculations showing that CCARS have better contrast over CARS in any situation. Comparison of the signals of both techniques generated on water-ethanol solutions confirm these results. Finally, we acquired CCARS images of fresh biological tissues, attesting that it is a useful tool for biological studies.

8.
Tumour Biol ; 40(4): 1010428318770953, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29663855

RESUMO

Second-harmonic generation microscopy represents an important tool to evaluate extracellular matrix collagen structure, which undergoes changes during cancer progression. Thus, it is potentially relevant to assess breast cancer development. We propose the use of second-harmonic generation images of tumor stroma selected on hematoxylin and eosin-stained slides to evaluate the prognostic value of collagen fibers analyses in peri and intratumoral areas in patients diagnosed with invasive ductal breast carcinoma. Quantitative analyses of collagen parameters were performed using ImageJ software. These parameters presented significantly higher values in peri than in intratumoral areas. Higher intratumoral collagen uniformity was associated with high pathological stages and with the presence of axillary lymph node metastasis. In patients with immunohistochemistry-based luminal subtype, higher intratumoral collagen uniformity and quantity were independently associated with poorer relapse-free and overall survival, respectively. A multivariate response recursive partitioning model determined 12.857 and 11.894 as the best cut-offs for intratumoral collagen quantity and uniformity, respectively. These values have shown high sensitivity and specificity to differentiate distinct outcomes. Values of intratumoral collagen quantity and uniformity exceeding the cut-offs were strongly associated with poorer relapse-free and overall survival. Our findings support a promising prognostic value of quantitative evaluation of intratumoral collagen by second-harmonic generation imaging mainly in the luminal subtype breast cancer.


Assuntos
Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Colágeno/análise , Matriz Extracelular/metabolismo , Microscopia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Axila/patologia , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/mortalidade , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/mortalidade , Feminino , Humanos , Linfonodos/patologia , Metástase Linfática/patologia , Pessoa de Meia-Idade , Prognóstico
9.
Nano Lett ; 17(10): 5938-5949, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28895736

RESUMO

Electrically active field-effect transistors (FET) based biosensors are of paramount importance in life science applications, as they offer direct, fast, and highly sensitive label-free detection capabilities of several biomolecules of specific interest. In this work, we report a detailed investigation on surface functionalization and covalent immobilization of biomarkers using biocompatible ethanolamine and poly(ethylene glycol) derivate coatings, as compared to the conventional approaches using silica monoliths, in order to substantially increase both the sensitivity and molecular selectivity of nanowire-based FET biosensor platforms. Quantitative fluorescence, atomic and Kelvin probe force microscopy allowed detailed investigation of the homogeneity and density of immobilized biomarkers on different biofunctionalized surfaces. Significantly enhanced binding specificity, biomarker density, and target biomolecule capture efficiency were thus achieved for DNA as well as for proteins from pathogens. This optimized functionalization methodology was applied to InP nanowires that due to their low surface recombination rates were used as new active transducers for biosensors. The developed devices provide ultrahigh label-free detection sensitivities ∼1 fM for specific DNA sequences, measured via the net change in device electrical resistance. Similar levels of ultrasensitive detection of ∼6 fM were achieved for a Chagas Disease protein marker (IBMP8-1). The developed InP nanowire biosensor provides thus a qualified tool for detection of the chronic infection stage of this disease, leading to improved diagnosis and control of spread. These methodological developments are expected to substantially enhance the chemical robustness, diagnostic reliability, detection sensitivity, and biomarker selectivity for current and future biosensing devices.


Assuntos
Antígenos de Protozoários/análise , Técnicas Biossensoriais/instrumentação , Doença de Chagas/diagnóstico , Nanofios/química , Trypanosoma cruzi/isolamento & purificação , Anticorpos Imobilizados/química , Antígenos de Protozoários/genética , Biomarcadores/análise , Técnicas Biossensoriais/métodos , Doença de Chagas/parasitologia , DNA/análise , DNA/genética , Desenho de Equipamento , Humanos , Índio/química , Modelos Moleculares , Fosfinas/química , Propriedades de Superfície , Transistores Eletrônicos , Trypanosoma cruzi/genética
10.
Colloids Surf B Biointerfaces ; 159: 174-182, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28787633

RESUMO

The pathogenicity of Xylella fastidiosa is associated with its systematic colonization of the plant xylem, forming bacterial biofilms. Mechanisms of bacterial transport among different xylem vessels, however, are not completely understood yet, but are strongly influenced by the presence of extracellular polymeric substances (EPS), which surrounds the assembly of cells forming the biofilm. In this work, we show quantitative measurements on the elastic properties of the system composed by EPS and bacterial cell. In order to investigate the mechanical properties of this system, force spectroscopy and confocal Raman measurements were carried out during Xylella fastidiosa subsp. pauca initial stages of adhesion and cluster formation. We show that stiffness progressively decreases with increasing culture growth time, from two to five days. For early adhesion samples, stiffness values are quite different at the bacterial polar and body regions. Lower stiffness values at the cell pole suggest a flexible mechanical response at this region, associated with first cell adhesion to a surface. These results correlate very well with our observations of cell motion within microchannels, under conditions simulating xylem flow. Both the oscillatory movement of vertically attached single cells, as well as the transport of cell clusters within the biofilm matrix can be explained by the presence of softer materials at the cell pole and EPS matrix. Our results may thus add to a more detailed understanding of mechanisms used by cells to migrate among vessels in plant xylem.


Assuntos
Biofilmes/efeitos dos fármacos , Xylella/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Polímeros/farmacologia
11.
Cancer Inform ; 16: 1176935117690162, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469386

RESUMO

A vast number of human pathologic conditions are directly or indirectly related to tissular collagen structure remodeling. The nonlinear optical microscopy second-harmonic generation has become a powerful tool for imaging biological tissues with anisotropic hyperpolarized structures, such as collagen. During the past years, several quantification methods to analyze and evaluate these images have been developed. However, automated or semiautomated solutions are necessary to ensure objectivity and reproducibility of such analysis. This work describes automation and improvement methods for calculating the anisotropy (using fast Fourier transform analysis and the gray-level co-occurrence matrix). These were applied to analyze biopsy samples of human ovarian epithelial cancer at different stages of malignancy (mucinous, serous, mixed, and endometrial subtypes). The semiautomation procedure enabled us to design a diagnostic protocol that recognizes between healthy and pathologic tissues, as well as between different tumor types.

12.
Nano Lett ; 16(7): 4656-64, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27336224

RESUMO

Surface attachment of a planktonic bacteria, mediated by adhesins and extracellular polymeric substances (EPS), is a crucial step for biofilm formation. Some pathogens can modulate cell adhesiveness, impacting host colonization and virulence. A framework able to quantify cell-surface interaction forces and their dependence on chemical surface composition may unveil adhesiveness control mechanisms as new targets for intervention and disease control. Here we employed InP nanowire arrays to dissect factors involved in the early stage biofilm formation of the phytopathogen Xylella fastidiosa. Ex vivo experiments demonstrate single-cell adhesion forces up to 45 nN, depending on the cell orientation with respect to the surface. Larger adhesion forces occur at the cell poles; secreted EPS layers and filaments provide additional mechanical support. Significant adhesion force enhancements were observed for single cells anchoring a biofilm and particularly on XadA1 adhesin-coated surfaces, evidencing molecular mechanisms developed by bacterial pathogens to create a stronger holdfast to specific host tissues.


Assuntos
Adesinas Bacterianas/química , Aderência Bacteriana , Biofilmes , Nanofios , Xylella/fisiologia
13.
Opt Express ; 23(15): 19715-27, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26367629

RESUMO

In this work we describe a method to obtain photoluminescente excitation spectra, through one and two photon absorption, of CdTe quantum dots, based on a confocal microscope platform. This system becomes an analytical multipurpose characterization platform with spatial, and spectral resolution with temperature control. The capabilities of such platform were demonstrated by photoluminescence and second harmonic generation spectra acquisition as a function of temperature from 10 K to room temperature. The differences for one and two photons transition selection rules between the quantum dot confined levels provide access to intra and inter band, forbidden in one photon transitions, information that could be used to validate confinement models. The results agree well with the transition selection rules calculated with a parabolic model.

14.
Int J Nanomedicine ; 10: 4393-404, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26185442

RESUMO

New methods of analysis involving semiconductor nanocrystals (quantum dots [QDs]) as fluorescent probes have been highlighted in life science. QDs present some advantages when compared to organic dyes, such as size-tunable emission spectra, broad absorption bands, and principally exceptional resistance to photobleaching. Methods applying QDs can be simple, not laborious, and can present high sensibility, allowing biomolecule identification and quantification with high specificity. In this context, the aim of this work was to apply dual-color CdTe QDs to quantify red blood cell (RBC) antigen expression on cell surface by flow cytometric analysis. QDs were conjugated to anti-A or anti-B monoclonal antibodies, as well as to the anti-H (Ulex europaeus I) lectin, to investigate RBCs of A1, B, A1B, O, A2, and Aweak donors. Bioconjugates were capable of distinguishing the different expressions of RBC antigens, both by labeling efficiency and by flow cytometry histogram profile. Furthermore, results showed that RBCs from Aweak donors present fewer amounts of A antigens and higher amounts of H, when compared to A1 RBCs. In the A group, the amount of A antigens decreased as A1 > A3 > AX = Ael, while H antigens were AX = Ael > A1. Bioconjugates presented stability and remained active for at least 6 months. In conclusion, this methodology with high sensibility and specificity can be applied to study a variety of RBC antigens, and, as a quantitative tool, can help in achieving a better comprehension of the antigen expression patterns on RBC membranes.


Assuntos
Antígenos de Grupos Sanguíneos/sangue , Compostos de Cádmio/química , Citometria de Fluxo/métodos , Pontos Quânticos/química , Telúrio/química , Anticorpos Monoclonais , Eritrócitos/química , Humanos
15.
Sci Rep ; 5: 9856, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25891045

RESUMO

Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation.


Assuntos
Aderência Bacteriana/fisiologia , Biofilmes/crescimento & desenvolvimento , Xylella/fisiologia , DNA Bacteriano/química , Microscopia Confocal , Microscopia de Fluorescência , Análise Espectral Raman , Eletricidade Estática , Xylella/genética , Xylella/crescimento & desenvolvimento
17.
Nat Commun ; 5: 5159, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25319025

RESUMO

Focal adhesion kinase (FAK) contributes to cellular homeostasis under stress conditions. Here we show that αB-crystallin interacts with and confers protection to FAK against calpain-mediated proteolysis in cardiomyocytes. A hydrophobic patch mapped between helices 1 and 4 of the FAK FAT domain was found to bind to the ß4-ß8 groove of αB-crystallin. Such an interaction requires FAK tyrosine 925 and is enhanced following its phosphorylation by Src, which occurs upon FAK stimulation. αB-crystallin silencing results in calpain-dependent FAK depletion and in the increased apoptosis of cardiomyocytes in response to mechanical stress. FAK overexpression protects cardiomyocytes depleted of αB-crystallin against the stretch-induced apoptosis. Consistently, load-induced apoptosis is blunted in the hearts from cardiac-specific FAK transgenic mice transiently depleted of αB-crystallin by RNA interference. These studies define a role for αB-crystallin in controlling FAK function and cardiomyocyte survival through the prevention of calpain-mediated degradation of FAK.


Assuntos
Calpaína/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Regulação Enzimológica da Expressão Gênica , Miócitos Cardíacos/citologia , Cadeia B de alfa-Cristalina/química , Animais , Aorta/metabolismo , Apoptose , Sobrevivência Celular , Transferência Ressonante de Energia de Fluorescência , Inativação Gênica , Homeostase , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Modelos Moleculares , Miocárdio/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , Ratos Wistar , Estresse Mecânico , Quinases da Família src/metabolismo
18.
Biomed Mater Eng ; 24(6): 3419-26, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25227053

RESUMO

Murine induced colon cancer has been used to demonstrate that Second Harmonic Generation (SHG) microscopy images, combined with Two-Photon Excitation Fluorescence (TPEF) and specific quantization scoring methods allow distinguishing early alterations in colon mucosa. TPEF was used only to identified crypts and submucosa regions, whereas the image analysis was used to get quantitative data (Integrated Intensity and Aspect Ratio scoring) of different cancer stages. The submucosa amount of collagen fibers was significant and their orientation suffering proportional changes with the development of the pathological processes. Both after the fourth and eighth weeks after colon cancer induction, integrated intensity and aspect ratio values have shown significant statistical differences compared with control samples. Thus, SHG microscopy has proved to be a useful quantitative tool to highlight early changes of submucosa and the progression of these through the cancer development.


Assuntos
Algoritmos , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Multimodal/métodos , Animais , Aumento da Imagem/métodos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dinâmica não Linear , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Methods Mol Biol ; 1199: 3-9, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25103796

RESUMO

This chapter provides a short review of quantum dots (QDs) physics, applications, and perspectives. The main advantage of QDs over bulk semiconductors is the fact that the size became a control parameter to tailor the optical properties of new materials. Size changes the confinement energy which alters the optical properties of the material, such as absorption, refractive index, and emission bands. Therefore, by using QDs one can make several kinds of optical devices. One of these devices transforms electrons into photons to apply them as active optical components in illumination and displays. Other devices enable the transformation of photons into electrons to produce QDs solar cells or photodetectors. At the biomedical interface, the application of QDs, which is the most important aspect in this book, is based on fluorescence, which essentially transforms photons into photons of different wavelengths. This chapter introduces important parameters for QDs' biophotonic applications such as photostability, excitation and emission profiles, and quantum efficiency. We also present the perspectives for the use of QDs in fluorescence lifetime imaging (FLIM) and Förster resonance energy transfer (FRET), so useful in modern microscopy, and how to take advantage of the usually unwanted blinking effect to perform super-resolution microscopy.


Assuntos
Biologia/métodos , Óptica e Fotônica/métodos , Pontos Quânticos
20.
Methods Mol Biol ; 1199: 85-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25103801

RESUMO

Fluorescence Correlation Spectroscopy (FCS) is an optical technique that allows the measurement of the diffusion coefficient of molecules in a diluted sample. From the diffusion coefficient it is possible to calculate the hydrodynamic radius of the molecules. For colloidal quantum dots (QDs) the hydrodynamic radius is valuable information to study interactions with other molecules or other QDs. In this chapter we describe the main aspects of the technique and how to use it to calculate the hydrodynamic radius of quantum dots (QDs).


Assuntos
Hidrodinâmica , Pontos Quânticos/química , Calibragem , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...